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Abstract. Two simple proofs are presented for the first order virial expansion of the self-energy of a particle
moving through a medium, characterised by temperature and/or chemical potential(s). One is based on the
virial expansion of the self-energy operator itself, while the other is based on the analysis of its Feynman
diagrams in configuration space.

1 Introduction

More than a decade ago, Leutwyler and Smilga [1] con-
sidered the problem of mass shift and damping rate of a
nucleon propagating through a heat bath. As one of the
methods to deal with the problem, they wrote (the first
term of) the virial expansion of the nucleon self-energy,
which relates it to the pion–nucleon scattering amplitude
in the forward direction. At low pion density the first or-
der formula yields the dominating contribution. The ad-
vantage of such a formula is that one can use the exper-
imental data to compute the shift in self-energy without
relying on any theoretical structure. Further the formula is
simple enough to suggest a generalisation to other hadrons
in different media. Accordingly a number of authors have
used these relations to explore the properties of hadrons
in such media [2–4].

In the context of quantum electrodynamics, Barton [5]
took a physical approach to derive such formulae, follow-
ing an earlier suggestion by Feynman [6]. The refractive
index of a medium for a beam of particles of a definite
frequency differs from unity due to the scattering of the
incident beam by particles of the medium. The change in
frequency (energy) of the particles may be related to this
change in refractive index. In this way Feynman related
the self-energy of the electron to its forward scattering
amplitude with the virtual quanta in vacuum. Barton ex-
tended these considerations to the black body radiation.

Recently the complete expansion of the self-energy in
the medium in powers of the distribution function has
been proven in perturbation theory [7]. In effect, it is a re-
ordering of the contributions in perturbation theory, which
is an expansion in powers of coupling contant, to one in
powers of the distribution function. The analysis is carried
out in imaginary time formulation of field theory in the
medium.

Here we present two simple proofs of the first term in
the expansion of the self-energy. One is a generalisation
of the method used in [8] and is based directly on the

virial expansion of the ensemble average of any operator.
The other is in perturbation theory, based on Feynman
diagrams in configuration space.

We shall work here in the real time formulation of field
theory at finite temperature and density. Sections 2 and 3
describe the two proofs of the virial expansion. Section 4
discusses the relevance of such formulae and the possibility
of extending the proofs to higher order.

2 Virial expansion

Following Weinberg [9], we introduce a compact notation
for different types particles and their fields. Let a(�p, σ, f)
and a†(�p, σ, f) be the destruction and creation operators
for a particle of species f having momentum �p and spin
projection σ; then for example,

|�p, σ, f〉 = a†(�p, σ, f)|0〉.
They satisfy the commutation (anticommutation) rela-
tions (ωp = (�p 2 +m2)1/2),

[a(�p, σ, f), a†(�p ′, σ′, f ′]∓
= (2π)32ωpδ

3(�p − �p ′)δσσ′δff ′ .

The field operators are denoted by ψl(x), where the index
l denotes not only the field type but also runs over its
components. Then ψl(x) may be expanded as

ψl(x) =
∑

σ

∫
d3p

(2π)3
1

2ωp

[
ul(�p, σ, f)a(�p, σ, f)e−ip·x

+ vl(�p, σ, f)a†(�p, σ, fc)eip·x
]
, (2.1)

fc denoting the antiparticle of the species f . The coeffi-
cient functions ul and vl depend on the spin of the par-
ticle. We have in mind the three types of fields, namely,
the scalar field φ(x) for which ul = vl = 1; the Dirac
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spinor field ψ(x), for which they are the normalised Dirac
spinors, ū(�p, σ)u(�p, σ) = −v̄(�p, σ)v(�p, σ) = 2m and the
vector field Aµ, for which they are the polarisation vec-
tors, εµ(�p, σ), ε∗µ(�p, σ)ε

µ(�p, σ′) = −δσσ′ . Below we shall in
most places suppress the variable σ of ul, vl, a and a†. If
there is an integration over a 3-momentum, a summation
over the corresponding σ as in (2.1) will also be implied.

In the real time formulation of field theory in medium,
all Green functions, in particular the self-energy, acquire a
2 ⊗ 2 matrix structure. Since we confine here only to con-
tributions linear in the distribution function, it will, how-
ever, suffice to consider only the 11-component of these
matrices. Below we shall drop the 11 index1.

Let us begin with the self-energy Σ
(0)
f (p) of a particle

of type f and momentum p in vacuum. For our purpose,
we write this amputated, two-point Green function as

−i(2π)4δ4(p′ − p)ūl(�p, f)Σ
(0)
f (p)ul(�p, f)

= 〈0|a(�p ′, f)(S − 1)a†(�p, f)|0〉, (2.2)

where the S-operator is given by the familiar time ordered
expression,

S = T ei
∫

d4xLI(x),

LI(x) being any interaction Lagrangian built out of the
fields ψl(x). Because Σ(0)

f (p) is one-particle irreducible by
definition, it is understood here and below that we only
retain such diagrams in matrix elements like the one on
the right hand side of (2.2). The corresponding self-energy
in the medium will be denoted by Σf (p, u), where uµ is
the 4-velocity of the medium2. Actually we shall work in
the rest frame of the medium (u0 = 1, �u = 0). Then we
may write

−i(2π)4δ4(p′ − p)ūl(�p, f)Σf (p, u)ul(�p, f)

= 〈a(�p ′, f)(S − 1)a†(�p, f)〉, (2.3)

where 〈· · ·〉 denotes ensemble average: for any operator O,

〈O〉 = Tr(ρO), ρ = e−β(H−µN )/Tre−β(H−µN ). (2.4)

Here H is the Hamiltonian, β−1 the temperature. For il-
lustration we include a chemical potential µ for a fermionic
species with the corresponding number operator N .

The ensemble average 〈O〉 admits a virial expansion

〈O〉 = 〈0|O|0〉 +
∑
f ′

∫
d3k

(2π)32ωk
nf ′(ωk)〈�k, f ′|O|�k, f ′〉

+ · · · , (2.5)
1 The self-energy function Σ which actually shifts the pole

position of the propagator is related to the components in
a simple way [10]. With Σ11 these relations are ReΣ(p) =
ReΣ11(p) and ImΣ(p) = αImΣ11(p), where α = tanh(βp0/2)
for bosons and α = coth{β(p0 − µ)/2} for fermions (p0 > 0).
Thus Σ11 deviates from Σ by exponential corrections at small
temperatures. Further the factor α actually cancels on rear-
ranging the distribution functions within the integral, at least
for one-loop contributions [11]

2 No confusion should arise from the use of same u in uµ and
ul(	p, f)

where the sum over f ′ runs in general over the species
of particles present in the medium. The dots represent
terms of higher order in the distribution function n. The
latter are given by the familiar expressions, nB(ωk) =
(eβωk − 1)−1 for bosons and n±

F (ωk) = (eβ(ωk∓µ) + 1)−1

for fermions and antifermions respectively. Applying (2.5)
to the right hand side of (2.3), we get for Σ̃f (p, u) ≡
Σf (p, u) − Σ

(0)
f (p),

−i(2π)4δ4(p′ − p)ūl(�p, f)Σ̃f (p, u)ul(�p, f)

=
∑
f ′

∫
d3k

(2π)32ωk
nf ′(ωk)〈�k, f ′|a(�p ′, f)(S − 1)

×a†(�p, f)|�k, f ′〉. (2.6)

The matrix element on the right in this equation is recog-
nised to be the amplitude T for scattering of a f -particle
of momentum p with a f ′-particle of momentum k in the
forward direction,

〈�k, f ′|a(�p ′, f)(S − 1)a†(�p, f)|�k, f ′〉
= i(2π)4δ4(�p ′ − �p)Tff ′(p, k). (2.7)

We thus get the virial expansion for the self-energy to first
order,

−ūl(�p, f)Σ̃f (p, u)ul(�p, f)

=
∑
f ′

∫
d3k

(2π)32ωk
nf ′(ωk)Tff ′(p, k), (2.8)

where an average over the polarizations of f -species and
a sum over the polarizations of the different f ′-species are
understood.

We now apply this formula to two cases of interest.
The first one is that of a nucleon in a medium. Its com-
plete propagator in the medium is i/(p/−m− Σ̃f ). For the
nucleon at rest (�p = 0) in the rest frame of the medium, we
can write Σ̃f = a+bγ0, getting ū(p)Σ̃fu(p) = 2mN (a+b).
Also the complete propagator simplifies to

i
p0 − (mN + a+ b)

· 1
2
(1 + γ0).

Thus the new pole position is given by [1],

m̃N − i
2
ΓN (2.9)

= mN − 1
2mN

∑
f ′

∫
d3k

(2π)32ωk
n(ωk)TNf ′(p, k).

The other case we consider is that of a vector meson
in the medium. Let us rewrite (2.8) as

−1
3

∑
σ

ε∗µ(p, σ)Π̃
µν(p, u)εν(p, σ)

=
∑
f ′

∫
d3k

(2π)32ωk
nf ′(ωk)TV f ′(p, k). (2.10)
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The free propagator for the vector meson is

D(0)
µν (p) =

(
−gµν +

pµpν

m2
V

)
i

p2 − m2
V

. (2.11)

To sum the series of one-particle reducible insertions of
the polarisation tensor, we have to decompose the latter
in terms of kinematic covariants,

Π̃µν = PµνΠt +QµνΠl, (2.12)

which we choose as

Pµν = −gµν +
pµpν

p2 − p2

p̄2 ũµũν , Qµν =
p4

p̄2 ũµũν , (2.13)

where ω = u · p, p̄ = (ω2 − p2)1/2 and ũµ = uµ − ωpµ/p
2.

The covariants are free from singularities at p2 = 0, but
at �p = 0, there is a constraint on the two amplitudes,

Πt(p0, �p = 0) = p2
0Πl(p0, �p = 0). (2.14)

Then the full propagator becomes

Dµν =
i

p2 − m2
V − Πt

Pµν +
i

p2 − m2
V − p2Πl

Qµν

p2

+
ipµpν

m2
V p

2 . (2.15)

Thus in general the transverse and the longitudinal com-
ponents suffer different shifts in the position of the pole.
But for the vector meson at rest (�p = 0) the two shifts co-
incide, because of the constraint equation (2.14). We then
get the same formula for the pole shift as (2.9) with the
subscript N replaced by V .

3 Perturbation expansion

We now attempt a perturbative proof of (2.8). We begin
by expanding the S-operator in (2.3) in the familiar per-
turbation series,

−i(2π)4δ4(p′ − p)ūl(�p, f)Σf (p, u)ul(�p, f)

=
∞∑

N=1

iN

N !

∫
d4x1 · · ·d4xNF (N)(x1 · · ·xN ), (3.1)

where

F (N)(x1 · · ·xN ) (3.2)

= 〈a(�p ′, f)T{LI(x1) · · · LI(xN )}a†(�p, f)〉paired.

The subscript “paired” indicates that F (N) is the sum of
all connected terms obtained by pairing (contracting) all
the operators in it in all possible ways. In other words,
it represents the sum of all connected Feynman diagrams
in the Nth order. In the following we indicate a pairing
by thick dots as superscript. The pairing between a cre-
ation or an annihilation operator of a particle with a field
operator is given by

a•(�p ′, f)ψ̄•
l (x) = eip′·xūl(�p ′, f),

ψ•
l (x)a

†•
(�p, f) = e−ip·xul(�p, f). (3.3)

We may choose to work out the self-energy of a particle.
But the medium may contain antiparticles. So we also note
the contractions,

a•(�p ′, fc)ψ•
l (x) = eip′·xvl(�p ′, f),

ψ̄•
l (x)a

†•
(�p, fc) = e−ip·xv̄l(�p, f). (3.4)

Finally the pairing of two field operators results in the free
propagator in the medium [12],

ψ•
l (x)ψ̄

•
m(y) = 〈Tψl(x)ψ̄m(y)〉. (3.5)

A free propagator in the medium differs from that in
vacuum if there are like-particles in the medium. In that
case, it has an extra term containing the distribution func-
tion n of the particles in the medium and a mass-shell
δ-function. Thus, isolating this term amounts to putting
the internal line on mass-shell, i.e. opening the propagator
into two external lines. When the δ-function is integrated
out, this n-dependent piece in the propagator, to be de-
noted by a subscript n, becomes

〈Tψl(x)ψ̄m(y)〉n

=
∫

d3k

(2π)32ωk

{
±n+

f (ωk)e−ik·(x−y)ul(�k, f)ūm(�k, f)

+ n−
f (ωk)eik·(x−y)vl(�k, f)v̄m(�k, f)

}
, (3.6)

where + (–) sign before the first term holds if the species
f is a boson (fermion). The distribution functions n+ and
n− coincide if there is no chemical potential.

Let us assume, for simplicity, that only one species of
particles has its free propagator altered in the medium by
the additional term (3.6). We single out this field from
the compact notation ψl(x) and call it χl(x) and denote
its species by f ′ 3. We now wish to collect all the linear
contributions in n by opening each of the χ-propagators in
turn in each of the Feynman diagrams for the self-energy
in the Nth order of its perturbation expansion (Fig. 1). To
this end we consider the sum of Feynman diagrams, to be
denoted by F

(N)
ij (x1, · · · , xN ), containing a χ-propagator

between any two vertices, say at xi and xj ,

F
(N)
ij (x1, · · · , xN )

= 〈a(�p ′f)T{LI(x1) · · · LI
•(xi) · · · LI

•(xj)

· · · LI(xN )}a†(�p, f)〉paired, (3.7)

where we explicitly indicate the pairing of the two fields
at xi and xj .

Consider first the indicated pairing in (3.7) before any
other pairings are carried out, i.e., keeping all other oper-
ators in their respective positions in the T -product. By a
certain number of interchanges of the field operators we
bring them together to form 〈χl(xi)χ̄m(xj)〉. Then we ex-
tract its n-dependent contribution given by (3.6)4. Since

3 For self-conjugate species like π0, the two terms in (3.6)
contribute to the same amplitude, the direct and crossed pro-
cesses being identical

4 If f ′ is a fermionic species, there may be two such propa-
gators between xi and xj . We, of course, have to extract this
contribution from both of them
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we restrict ourselves to linear contributions in n, we set
all other in-medium propagators to their vacuum values.

In order to interpret the resulting expression in terms
of a two-body scattering amplitude, we use (3.3) to rewrite
the coefficient functions for the f ′ species in 〈χl(xi)χ̄m

(xj)〉 as pairings,

e−ik·(xi−xj)ul(�k, f ′)ūm(�k, f ′)

= χ•
l (xi)a†•

(�k, f ′)a••(�k, f ′)χ̄••
m (xj). (3.8)

For the antiparticle species f ′c, we use (3.4) to write an
analogous equation,

eik·(xi−xj)vl(�k, f ′)v̄m(�k, f ′)

= a•(�k, f ′c)χ•
l (xi)χ••

m (xj)a†••
(�k, f ′c). (3.9)

Now the χ fields can be brought back to their original
positions forming again the complete vertices LI(xi) and
LI(xj). We also bring the creation and the annihilation
operators respectively to the right and the left of the T -
product getting

F
(N)
ij,n (x1, · · · , xN )

=
∫

d3k

(2π)32ωk
n(ωk)〈0|a(�p ′, f)a••(�k, f ′)T{LI(x1)

· · · LI
•(xi) · · · LI

••(xj) · · · LI(xN )

×a†•
(�k, f ′)a†(�p, f)|0〉paired, (3.10)

where the subscript n denotes the n-dependent contribu-
tion from the χ-propagator connecting xi and xj .

It remains to show that we do not get any additional
sign, if the χ field is fermionic. First note that bringing
the fields χ(xi) and χ̄(xj) together to form the propaga-
tor and then putting them back to their old positions can
be effected by the same set of field interchanges, one in
reverse order of the other. Thus we do not encounter any
extra minus sign here. Also the interaction Lagrangians
being quadratic in fermionic χ, the operators a(�k, f ′) and
a†(�k, f ′) do not produce any minus sign while moving
through them. However, in the left hand side of (3.8) an
initial interchange of a and a† is needed which produces
a minus sign to cancel the minus sign in front of the first
term in (3.6). Thus (3.10) remains valid for both fermionic
and bosonic operators.

Equation (3.10) gives the linear contribution from a
definite χ- propagator, namely the one between xi and xj .
To get the total contribution from all the χ-propagators
in the diagrams, we must allow a(�k, f ′) and a†(�k, f ′) to
be paired with χ fields at all vertices in all possible ways,
not just with χ(xi) and χ̄(xj). Thus we get

F (N)
n (x1, · · · , xN ) (3.11)

=
∫

d3k

(2π)32ωq
n(ωq)〈0|a(�p ′, f)a(�k, f ′)

×T{LI(x1) · · · LI(xN )}a†(�k, f ′)a†(�p, f)|0〉paired.
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Fig. 1. The virial expansion of self-energy in medium to first
order

This matrix element is just the sum of all Feynman di-
agrams in coordinate space in the Nth order of pertur-
bation expansion for the scattering amplitude Tff ′ intro-
duced previously by (2.7). We thus prove (2.8) in an arbi-
trary order of pertubation theory.

4 Discussion

It is well known that the effective theory incorporating
the symmetries of the QCD Lagrangian, called the chiral
perturbation theory, can successfully describe the strong
interaction processes in the low energy region [13]. This
theory finds a natural application in the realm of hadronic
statistical physics [14–16]. There is also a phenomenolog-
ical approach in statistical mechanics for interacting sys-
tems, namely the method of virial expansion.

In a region where the expansions of both the methods
converge rapidly, the virial expansion would prove to be
an identity in chiral perturbation theory. However, there
are situations, due to the proximity of resonances, for ex-
ample, where the effective coupling constants in the chiral
Lagrangian can be rather large and the leading term in
the chiral expansion may hold only in a limited region
of interest. The virial expansion, on the other hand, may
enjoy a wider range of validity.

The case of the nucleon self-energy at finite tempera-
ture illustrates this point [1]. Due to the presence of the
∆(1232) resonance near the πN threshold, the chiral ex-
pansion converges slowly, whereas the first term in the
virial expansion is a good representation for low enough
pion densities. Another example is the nucleon self-energy
in a nuclear medium, which involves the interaction of the
two-nucleon system. Here the presence of bound or virtual
two-nucleon states close to the threshold of NN scattering
makes it difficult to formulate a satisfactory chiral pertur-
bation theory for this system [17]. But the virial formula
is expected to hold for densities close to the nuclear satu-
ration density [18].

The proofs for the virial expansion described here are
indeed simple, mainly because we restrict to the first order
formula. But the methods are not restricted to the first
term in any way. They may well provide simple alternative
proofs in the real time formalism for the complete virial
expansion [7]. One has only to take care of two additional
aspects, namely, the disconnected parts that result from
opening more than one internal lines and the 2⊗2 matrix
structure due to the so-called ghost vertices.
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